Pandas is a powerful library for data analysis and manipulation in Python.
It provides two main data structures: - Series: A one-dimensional array-like object. - DataFrame: A two-dimensional table with labeled axes (rows and columns).
# Importing pandasimport pandas as pd
Creating a Series
# Creating a Series from a listdata = [10, 20, 30, 40, 50]series = pd.Series(data)series
0
0
10
1
20
2
30
3
40
4
50
Creating a DataFrame
# Creating a DataFrame from a dictionarydata = {"Name": ["Alice", "Bob", "Charlie"],"Age": [25, 30, 35],"City": ["New York", "Los Angeles", "Chicago"]}df = pd.DataFrame(data)df
Name
Age
City
0
Alice
25
New York
1
Bob
30
Los Angeles
2
Charlie
35
Chicago
Exploring Data
# Display the first few rowsdf.head()# Display the shape of the DataFrameprint("Shape:", df.shape)# Display summary statisticsdf.describe()
Shape: (3, 3)
Age
count
3.0
mean
30.0
std
5.0
min
25.0
25%
27.5
50%
30.0
75%
32.5
max
35.0
Selecting Data
# Selecting a single columndf["Name"]
Name
0
Alice
1
Bob
2
Charlie
# Selecting multiple columnsdf[["Name", "City"]]
Name
City
0
Alice
New York
1
Bob
Los Angeles
2
Charlie
Chicago
# Selecting rows by indexdf.iloc[0]
0
Name
Alice
Age
25
City
New York
Filtering Data
# Filtering rows where Age is greater than 25filtered_df = df[df["Age"] >25]filtered_df
Name
Age
City
1
Bob
30
Los Angeles
2
Charlie
35
Chicago
Adding a New Column
# Adding a new columndf["Salary"] = [50000, 60000, 70000]df
Name
Age
City
Salary
0
Alice
25
New York
50000
1
Bob
30
Los Angeles
60000
2
Charlie
35
Chicago
70000
## Conclusion
This notebook covers the basic operations of pandas. You can explore more advanced features like merging,
joining, and working with time series data in pandas documentation: https://pandas.pydata.org/docs/